--- title: "Introduction to metalite.sl" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to metalite.sl} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} resource_files: - fig/*.png - pdf/*.pdf --- ```{r, include=FALSE} knitr::opts_chunk$set( comment = "#>", collapse = TRUE, out.width = "100%", dpi = 150, eval = TRUE ) ``` ```{r} library(metalite) library(metalite.sl) ``` # Overview metalite.sl R package designed for the analysis & reporting of subject-level analysis in clinical trials. It operates on ADaM datasets and adheres to the metalite structure. The package encompasses the following components:
Baseline Characteristics.
This R package offers a comprehensive software development lifecycle (SDLC) solution, encompassing activities such as definition, development, validation, and finalization of the analysis. # Highlighted features - Avoid duplicated input by using metadata structure. - For example, define analysis population once to use in all subject level analysis. - Consistent input and output in standard functions. - Provide workflow to add interactive features to subject-level analysis table. # Workflow The overall workflow includes the following steps: 1. Define metadata information using metalite R package. 1. Prepare outdata using `prepare_*()` functions. 1. Extend outdata using `extend_*()` functions (optional). 1. Format outdata using `format_*()` functions. 1. Create TLFs using `tlf_*()` functions. For instance, we can illustrate the creation of a straightforward Baseline characteristic table as shown below. ```{r, eval = FALSE} meta_sl_example() |> prepare_base_char( population = "apat", analysis = "base_char", parameter = "age;gender" ) |> format_base_char() |> rtf_base_char( source = "Source: [CDISCpilot: adam-adsl]", path_outdata = tempfile(fileext = ".Rdata"), path_outtable = tempfile(fileext = ".rtf") ) ``` ```{r, out.width = "100%", out.height = "400px", echo = FALSE, fig.align = "center"} knitr::include_graphics("pdf/base0char.pdf") ``` An example for interactive baseline characteristic table: ```{r} react_base_char( metadata_sl = meta_sl_example(), metadata_ae = metalite.ae::meta_ae_example(), population = "apat", observation = "wk12", display_total = TRUE, sl_parameter = "age;race", ae_subgroup = c("age", "race"), ae_specific = "rel", width = 1200 ) ``` Additional examples and tutorials can be found on the [package website](https://merck.github.io/metalite.sl/articles/), offering further guidance and illustrations. ## Input To implement the workflow in metalite.sl, it is necessary to establish a metadata structure using the metalite R package. For detailed instructions, please consult the [metalite tutorial](https://merck.github.io/metalite/articles/metalite.html) and refer to the source code of the function [`meta_sl_example()`](https://github.com/Merck/metalite.sl/blob/main/R/meta_sl_example.R).